An improved error bound on Gauss quadrature
نویسندگان
چکیده
منابع مشابه
Error Bounds for Gauss-kronrod Quadrature Formulae
The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...
متن کاملA generalized discrepancy and quadrature error bound
An error bound for multidimensional quadrature is derived that includes the Koksma-Hlawka inequality as a special case. This error bound takes the form of a product of two terms. One term, which depends only on the integrand, is defined as a generalized variation. The other term, which depends only on the quadrature rule, is defined as a generalized discrepancy. The generalized discrepancy is a...
متن کاملError Estimates for Gauss Quadrature Formulas for Analytic Functions
1. Introduction. The estimation of quadrature errors for analytic functions has been considered by Davis and Rabinowitz [1]. An estimate for the error of the Gaussian quadrature formula for analytic functions was obtained by Davis [2]. McNamee [3] has also discussed the estimation of error of the Gauss-Legendre quadrature for analytic functions. Convergence of the Gaussian quadratures was discu...
متن کاملAn Improved Error Bound for Gaussian Interpolation
It’s well known that there is a so-called exponential-type error bound for Gaussian interpolation which is the most powerful error bound hitherto. It’s of the form |f(x) − s(x)| ≤ c1(c2d) c3 d ‖f‖h where f and s are the interpolated and interpolating functions respectively, c1, c2, c3 are positive constants, d is the fill-distance which roughly speaking measures the spacing of the data points, ...
متن کاملStieltjes Polynomials and the Error of Gauss-kronrod Quadrature Formulas
The Gauss-Kronrod quadrature scheme, which is based on the zeros of Legendre polynomials and Stieltjes polynomials, is the standard method for automatic numerical integration in mathematical software libraries. For a long time, very little was known about the error of the Gauss-Kronrod scheme. An essential progress was made only recently, based on new bounds and as-ymptotic properties for the S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2016
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.01.015